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The aim of this article is to compare Donnell's, Love's, Sanders' and FluK gge's thin shell
theories in the evaluation of natural frequencies of cylinders sti!ened with rings and
stringers, whose e!ect is smeared over the entire surface of the cylinder. It is demonstrated
that due to the large increase in bending sti!ness related to rings, Donnell's theory provides
highly inaccurate results with respect to the other three theories. Numerical results related to
aluminum and composite sti!ened cylinders and a comparison with results obtained with
a "nite element model of a sti!ened cylinder complete the work.
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1. INTRODUCTION

Cylinders sti!ened by rings and stringers are extensively used in engineering practice in
order both to increase sti!ness and strength, and to reduce the weight of the structure to be
designed; aircraft fuselages, missile bodies and shells of ships and submarines are examples
of such structures. A number of researchers have dealt with this topic and a review of the
available literature can be found in reference [1].

In the analysis of sti!ened cylinders, the e!ects of rings and stringers can be considered by
treating them as discrete elements or by averaging their properties over the surface of the
shell. An example of the application of the "rst approach is shown in reference [2], where
the analysis of free vibration of orthogonally sti!ened cylindrical shells is addressed. In
contrast, when the sti!eners are large in number, closely and equally spaced, the second
approach can be applied.

The latter method, in which the eccentricity of sti!eners is taken into account, was
originally derived for buckling analysis in reference [3], used in reference [4] to determine
the static and dynamic behavior of sti!ened plates and cylindrical shells, and extensively
employed in the study of the general instability of cylindrical and conical shells in references
[5, 6]. Moreover, this smeared approach was also taken into account during the Apollo
program in the design of the Saturn V launch vehicle as described in reference [7].

More recently, several authors [8}11] addressed the problem of predicting interior noise
levels in the fuselage of propeller driven aircraft and, in order to obtain a "rst estimate of the
performance of both active and passive control methods in reducing the interior pressure
level and vibrations of the fuselage sidewall, used cylinders sti!ened by rings and stringers to
represent the dynamic behavior of the fuselage, usually representing their e!ect by the
smeared approach.
0022-460X/01/250847#14 $35.00/0 ( 2001 Academic Press
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It is well known that the averaging procedure introduces modi"cations into the
extensional, coupling and bending submatrices [A], [B] and [D] described in reference
[12], such that from this viewpoint a sti!ened shell can be analyzed with methods usually
applied for composite laminates.

1.1. STUDIES ON LAMINATE AND ISOTROPIC SHELLS

Laminate thin elastic shells have been examined by several investigators. Usually, the
problem of determining the static and dynamic response, as well as the dynamic behavior,
or laminate and/or homogeneous isotropic shells is addressed by using some simplifying
assumptions proposed initially by Love that led to the development of a sub-class of the
theory of elasticity known as the theory of thin elastic shells. Love's First Approximation
Theory (LFAT) for thin elastic shells is based upon the following postulates [13]: (1) the
shell is thin; (2) the de#ections of the shell are small; (3) the transverse normal stress is
negligible; (4) normals to the middle surface of the shell remain normal to it and undergo no
change in length during deformation.

Several theories have been developed according to these four postulates. As described in
reference [14], the Donnell}Mushtari shallow shell theory is based on other
approximations on terms present in curvature and twist of the shell. Moreover, this theory
is inconsistent with respect to rigid-body motions; indeed, in reference [13] it is
demonstrated that a rigid-body rotation gives a torsion if the shell is not a plate, a sphere or
a symmetrically loaded shell of revolution. Sanders' theory [13] is aimed to remove this
inconsistency, so that it is preferable to Donnell's theory in some cases.

By suspending one or more of Love's four postulates, Love's Second Approximation
Theories (LSAT) are derived. A theory of elastic shells in which Love's "rst postulate is
delayed was independently derived by FluK gge, Lur'e and Byrne [13].

As described by Reddy [15], several other theories have been developed by delaying
Love's fourth postulate. For thick laminates and laminates with high degree of anisotropy,
the transverse deformation e!ects can be signi"cant and theories which hold the fourth
postulate are not able to determine accurately the response to static and dynamic loads. As
a consequence, First order Shear Deformation Theories (FSDT) have been developed,
which consider a constant transverse shear strain over the thickness of the laminate [15]. In
contrast, second and higher order SDT use higher order polynomials to describe
displacement components through the thickness of the laminate. A good survey of all these
theories was written by Carrera [16].

In the analysis of static and dynamic response of homogeneous isotropic shells
Novozhilov [14] underlined the importance of the thickness to curvature ratio (h/R) in
order to make a distinction between thick and thin shells, i.e., cases in which theories
holding Love's "rst postulate can or cannot be applied with success.

During the analysis of laminate shells also the di!erence in mechanical properties due to
layer orientation must be considered. This aspect was addressed by Soldatos [17], who
performed an interesting work comparing results obtained with Donnell's, Sanders', Love's
and FluK gge's theories in the evaluation of natural frequencies of cross-ply laminated panels,
a case in which mechanical properties are very di!erent along the 0 and 903 directions. In
reference [17], the importance of such a di!erence in mechanical properties over the accuracy
of natural frequencies evaluation was pointed out: it was demonstrated that for a cylinder
with h/R"0)01 and length over radius ratio (¸/R) of 10, Donnell's theory can provide results
with an error of about 10% with respect to results obtained through the other three theories
(the corresponding error for a homogeneous isotropic cylinder is much lower).
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1.2. PROJECT SCOPE

As previously stated, the averaging approach permits one to deal with sti!ened cylinders
with the same tools used with composite laminate shells. As a result, by recalling Soldatos'
work [17] and the in#uence of rings and stringers on the extensional, coupling and bending
sub-matrices, it should be expected that similar errors may occur in the analysis of sti!ened
shells.

In several previous works, di!erent thin shell theories were used to determine the static,
dynamic or vibroacoustic behavior of sti!ened cylinders (e.g., in references [9}11] Donnell's
theory was used, in reference [8] FluK gge's theory, while in reference [18] Cole III used the
Love}Timoshenko theory). Furthermore, Rinehart and Wang [19] compared Donnell's
and FluK gge's theories for cylindrical shells with longitudinal sti!eners, concluding that
&&Donnell's approximate theory gives excellent results for sti!ened shells,'' whereas Rosen
and Singer [6] compared Donnell's and FluK gge's theories for vibration of axially loaded
sti!ened cylindrical shells with experiments and obtained good agreement. However, it
appears that a study permitting one to understand which is the best theory to deal with
cylinders sti!ened by both rings and stringers and what is the extent of the error related to
each di!erent theory, is not available.

As a consequence, the aim of this article is to compare results provided by Donnell's,
Love's, Sanders' and FluK gge's theories. By following a technique introduced in works
related to the "eld of composite laminates [16, 17], some traces are used such that the
problem of determining the vibration behavior of sti!ened cylinders is written in a form
which includes all these four theories as particular cases.

In the following section, the four considered theories are brie#y reviewed, while section
3 presents results related to sti!ened cylinders. In section 4, numerical results are discussed
to highlight inaccuracies related to Donnell's theory.

2. SHELL THEORIES

Figure 1 shows a di!erential element of the shell under analysis with the curvilinear
orthogonal co-ordinates a and b. Each layer of the laminated shell is considered to behave
macroscopically as a homogeneous, orthotropic, linearly elastic material and all layers are
assumed to be perfectly bonded together. By recalling Love's fourth postulate, related to the
preservation of the normal during the deformation, it is assumed that displacements are
linearly distributed through the thickness of the shell,

u(a, b, z)"u0(a, b)#zu
,a(a, b),

v(a, b, z)"v0(a, b)#zv
,b(a, b),

w(a, b, z)"w (a, b), (1)

where u0 and v0 represent the displacement of the middle surface of the shell along a and
b directions respectively.

The kth layer is considered to be in a state of plane stress governed by the following
relation:
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Figure 1. Di!erential element of a shell.
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By introducing relations (1) into the exact expressions of strain and recalling Love's
postulates, the following equations are derived [13]:

ea"(e0a#zka)/Ia ,

eb"(e0b#zkb)/Ib,

eab"(Ibv0,a#Iau0,b#z(Ibv0,a/Rb#Iau0,b/Ra!w
,ab(Ia#Ib)))/IaIb. (3)

Here

e0a"u0
,a#w/Ra, e0b"v0

,b#w/Rb,

ka"u0
,a/Ra!w

,aa, kb"v0
,b/Rb!w

,bb, (4)

represent linear deformation and curvature of the middle surface of the shell, while
Ia"1#z/Ra and Ib"1#z/Rb.

To introduce FluK gge's theory and simplify the derivation of the equation of motion,
Kraus [13] rewrote eab as

eab"
1

IaIb Ae0abA1!
z2

RaRbB#zk0abA1#
z

2A
1

Ra
#

1

RbBBB, (5)

in order to divide terms depending on the z co-ordinate from constant terms, the latter
representing strains of the middle surface:

e0ab"u0
,b#v0

,a ,

k0ab"2(v0
,a/Rb#u0

,b/Ra!w
,ab). (6)

Strains ea and eb are written according to relations (3) and (4).
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Donnell's, Love's and Sanders' theories take into account all four of Love's
approximations. As a result, they neglect the term z/R with respect to one, i.e., Ia"Ib+1 in
equation (3). Furthermore, the main di!erences between these theories are due to di!erent
expressions for curvatures. In particular, the expression for strains used by Love is derived
by introducing Love's "rst assumption into equation (3), while in Donnell's theory it is also
necessary to neglect all the tangential displacements and related derivatives in the
curvatures. Sanders' theory utilizes a di!erent expression for curvatures in order to assure
that any rigid-body motion cannot introduce strain into the shell [13].

Expressions for strains according to these four shell theories can be written by using some
tracers d. In particular,

ea"
e0a#zka

1#d
F
z/Ra

, eb"
e0b#zkb

1#d
F
z/Rb

,

eab"
e0ab (1!d

F
z2/RaRb)#zk0ab(1#d

F
z/2(1/Ra#1/Rb))

(1#d
F
z/Ra) (1#d

F
z/Rb)

, (7)

where e0a and e0b are given by equation (4) and

ka"(d
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where tracers d
S
, d

L
and d

F
provide strain expressions related to Sanders', Love's and

FluK gge's theories, respectively, according to Donnell, d
S
"d

L
"d

F
"0; Sanders, d

S
"1,
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"d

F
"0; Love, d
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"1, d
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The sti!ness matrix of the shell in the four theories considered can be derived by recalling
the expression of the potential energy of deformation [14],

;"1/2 P
A
P

h@2

~h@2

(paea#pbeb#pabeab)IaIb da db dz, (9)

where Love's postulates have been applied and the integral extends over the surface A of the
shell and its thickness h.

By evaluating the integral "rstly along the z direction, expression (9) can be rewritten as

;"1/2 P
A

(Nae0a#Maka#Nbe0b#Mbkb#Nabe0ab#Mabk0ab) da db, (10)

where resultants of stresses N
ij

and of couples M
ij

are evaluated such that expressions (9)
and (10) are equal.

When FluK gge's theory is considered, to simplify the integration along the z direction one
can apply the approximation

(1#z/R)~1+1!z/R#(z/R)2, (11)

so that by introducing the vectors

NM "[NaNbNab], M"[MaMbMab],

e6"[e0a e0b e0ab], k1 "[kakbk0ab], (12)
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the stress and moment resultants can be related to strains of the middle surface through

G
NM
MM H"C

AM @ B1 @
B1 @ D1 @D G

e6
k1 H, (13)

where these matrices are functions of the well-known extensional, coupling and bending
sub-matrices [12],

[A
ij
, B

ij
, D

ij
]"P

h@2

~h@2

Q
ij
[1, z, z2] dz, i, j"1, 2, 6 (14)

as shown in Appendix A.

3. NUMERICAL RESULTS

In this section, several comparisons are shown, aimed to illustrate results obtained by
applying Donnell's, Love's, Sanders' and FluK gge's thin shell theories to sti!ened cylinders.

In the following, it is assumed that a"x, the axial co-ordinate of the cylinder, while
b"Rh; as a consequence, RaPR and Rb"R.

In every case, the cylinder is assumed to be simply supported at both ends, a boundary
condition which is satis"ed by the following functions for axial, circumferential and radial
displacements [17]:

u0(a, b)";
mn

cos(mnx/¸) sin(nnb/(2nR)),

v0(a, b)"<
mn

sin(mnx/¸) cos(nnb/(2nR)),

w(a, b)"=
mn

sin(mnx/¸) sin(nnb/(2nR)), (15)

where;
mn

,<
mn

and=
mn

are unknown constant coe$cients, while m and n are the number of
half-waves along the axial and circumferential directions respectively.

The sti!ness matrix obtained by using displacements (15) and the four thin shell theories
described in section 2 is written in Appendix B. For sti!ened cylinders the mass matrix has
been evaluated according to the averaging approach, i.e., the mass of both rings and
stringers has been smeared over the surface of the shell, and rotatory inertia has not been
taken into account.

3.1. ALUMINUM STIFFENED CYLINDERS

Some numerical comparisons have been performed to show results obtained by using
Donnell's, Love's, Sanders' and FluK gge's thin shell theories in evaluating natural frequencies
of sti!ened cylinders with 20 rings and 20 stringers; modi"cations to the sti!ness matrix due
to the presence of sti!eners are presented in Appendix C. An aluminum cylinder
(E"7)1]1010 N/m2, o"2700 kg/m3, l"0)31) with wall thickness of 5 mm, radius of 1 m
and length of 5 m has been considered. All natural frequencies have been evaluated for one
axial half-wave, i.e., m"1.

Tables 1 and 2 show normalized natural frequencies, u
1n

/u
1n,Love

, where u
1n,Love

is
calculated by using Love's theory. The comparison of normalized values allows one to
understand quickly what is the extent of the &&error'' associated to each theory if the result
obtained by using Love's theory is assumed to be correct.
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Table 1 shows normalized natural frequencies for the unsti!ened cylinder and high-lights
that in this case Donnell's theory provides results up to 3)5% higher with respect to the
corresponding Love's natural frequencies.

Results of Table 2 are related to a structure with stringers only, rings only and both
stringers and rings according to the label at the heading of the columns (in the table,
a"5 mm is the base of the sti!ener and b is its height). Several scenarios have been
considered, in which the height over base ratio ranges from 1 to 8. This table clearly shows
that natural frequencies of the cylinder sti!ened by stringers only and evaluated through
TABLE 2

Normalized natural frequencies u
1n

/u
1n,Love

for an aluminum sti+ened cylinder

Only stringers Only rings Stringers and rings

b/a n/2 Donnell Sanders FluK gge Donnell Sanders FluK gge Donnell Sanders FluK gge

1 1 1)0000 1)0000 1)0000 1)0000 1)0000 1)0000 1)0000 1)0000 1)0000
2 1)0011 0)9999 1)0000 1)0011 0)9999 1)0000 1)0011 0)9999 1)0000
3 1)0105 0)9997 0)9999 1)0111 0)9997 0)9999 1)0110 0)9997 0)9999
4 1)0320 0)9995 0)9998 1)0334 0)9995 0)9998 1)0331 0)9995 0)9998
5 1)0350 0)9996 0)9998 1)0356 0)9996 0)9999 1)0355 0)9996 0)9999
6 1)0272 0)9998 0)9999 1)0274 0)9998 0)9999 1)0274 0)9998 0)9999

2 1 1)0000 1)0000 1)0000 1)0000 1)0000 1)0000 1)0000 1)0000 1)0000
2 1)0011 0)9999 1)0000 1)0012 0)9999 1)0000 1)0012 0)9999 1)0000
3 1)0104 0)9997 0)9999 1)0149 0)9997 0)9999 1)0145 0)9997 1)0000
4 1)0317 0)9995 0)9998 1)0397 0)9996 1)0000 1)0392 0)9996 1)0000
5 1)0349 0)9996 0)9998 1)0377 0)9997 1)0001 1)0375 0)9997 1)0001
6 1)0272 0)9998 0)9999 1)0280 0)9999 1)0001 1)0280 0)9999 1)0001

5 1 1)0000 1)0000 1)0002 0)9997 1)0000 1)0000 0)9998 1)0000 1)0002
2 1)0010 0)9999 1)0004 1)0068 0)9999 1)0001 1)0065 0)9999 1)0005
3 1)0099 0)9997 1)0004 1)0575 0)9998 1)0009 1)0547 0)9998 1)0012
4 1)0305 0)9995 1)0001 1)0622 0)9999 1)0013 1)0614 0)9999 1)0014
5 1)0344 0)9996 0)9999 1)0425 1)0000 1)0012 1)0423 1)0000 1)0012
6 1)0271 0)9998 0)9999 1)0297 1)0000 1)0012 1)0297 1)0000 1)0012

8 1 1)0000 1)0000 1)0006 0)9995 1)0000 1)0000 0)9997 1)0000 1)0006
2 1)0010 0)9999 1)0011 1)0265 0)9999 1)0006 1)0242 1)0000 1)0016
3 1)0093 0)9998 1)0012 1)0991 0)9999 1)0031 1)0949 0)9999 1)0034
4 1)0290 0)9995 1)0008 1)0686 1)0000 1)0031 1)0681 1)0000 1)0032
5 1)0337 0)9996 1)0002 1)0445 1)0000 1)0029 1)0444 1)0000 1)0030
6 1)0268 0)9998 1)0000 1)0313 1)0000 1)0029 1)0313 1)0000 1)0029

TABLE 1

Normalized natural frequencies u
1n

/u
1n,Love

for an aluminum unsti+ened cylinder

n/2 Donnell Sanders FluK gge

1 1)0000 1)0000 1)0000
2 1)0011 0)9999 1)0000
3 1)0107 0)9997 0)9999
4 1)0322 0)9995 0)9997
5 1)0351 0)9996 0)9998
6 1)0273 0)9998 0)9999
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Donnell's theory are up to 3)5% higher than corresponding values calculated with the other
theories, as well as in the previous case of the unsti!ened cylinder. In contrast, by considering
the cylinder sti!ened by rings only, the error due to Donnell's theory can be higher than in the
previous case, by up to 9)9% of the corresponding Love's natural frequencies.

Finally, results listed in the last three columns of Table 2 and related to a cylinder
sti!ened with both stringers and frames (the previous two sti!eners are superimposed in the
structure under analysis) show that the error associated with Donnell's theory can be up to
9)5% higher than the corresponding Love's natural frequency.

In all these cases, it is interesting to underline that Love's, Sanders' and FluK gge's theories
give very close results. Moreover, this analysis shows that errors in results obtained through
Donnell's theory are related to the presence of rings.

3.2. COMPOSITE STIFFENED CYLINDERS

In this section, a family of thin composite cylinders sti!ened with 20 stringers and 20 rings
is considered. Moreover, geometric and material properties are: R"1 m, h"0)01 m; the
cylinders are composed of two graphite-epoxy layers with properties E

1
/E

2
"40,

G
12

/E
2
"0)5, v

12
"0)25 and orientations of 0 and 903. It has been assumed that both rings

and stringers are made with the same graphite-epoxy material oriented along the axis of the
sti!ener.

In reference [17], Soldatos analyzed natural frequencies of the unsti!ened composite
cylinders with geometric and material properties previously listed, and demonstrated that
eigenfrequencies provided by Donnell's theory are usually higher than results provided by
the other theories. The magnitude of this di!erence depends on the length-to-radius ratio of
the structure: for very short shells (¸/R(2) it is very low, while for longer shells (e.g.,
¸/R"10) the di!erence is up to 8)5%.

Accordingly, Table 3 shows normalized natural frequencies (similar to the previous
example) for the unsti!ened composite cylinder, with m set to 1, as a function of the
circumferential number of half-waves and for length-to-radius ratios of 1 and 10, con"rming
that for this structure Donnell's theory gives a value up to 8)8% higher than the
corresponding value obtained through Love's theory for ¸/R"10, while for the shorter
cylinder the di!erence is up to 1)2%.
TABLE 3

Normalized natural frequencies u
1n

/u
1n,Love

for a composite unsti+ened cylinder

¸/R n/2 Donnell Sanders FluK gge

1 1 1)0012 1)0000 0)9999
2 1)0021 1)0000 1)0000
3 1)0031 0)9999 1)0001
4 1)0052 0)9999 1)0003
5 1)0086 0)9998 1)0009
6 1)0122 0)9998 1)0018

10 1 1)0016 1)0000 0)9998
2 1)0295 0)9999 0)9998
3 1)0884 0)9999 1)0030
4 1)0661 0)9999 1)0046
5 1)0437 1)0000 1)0048
6 1)0309 1)0000 1)0049



TABLE 4

Normalized natural frequencies u
1n

/u
1n,Love

for a composite sti+ened cylinder (¸/R"1)

Only stringers Only rings Stringers and rings

b/a n/2 Donnell Sanders FluK gge Donnell Sanders FluK gge Donnell Sanders FluK gge

1 1 1)0012 1)0000 0)9999 1)0013 1)0000 0)9999 1)0013 1)0000 0)9999
2 1)0021 1)0000 1)0000 1)0022 1)0000 1)0000 1)0022 1)0000 1)0000
3 1)0031 0)9999 1)0001 1)0035 0)9999 1)0001 1)0035 0)9999 1)0001
4 1)0050 0)9999 1)0004 1)0062 0)9999 1)0004 1)0060 0)9999 1)0004
5 1)0082 0)9998 1)0009 1)0103 0)9998 1)0010 1)0098 0)9998 1)0011
6 1)0116 0)9998 1)0018 1)0142 0)9998 1)0021 1)0135 0)9998 1)0021

2 1 1)0012 1)0000 1)0000 1)0016 1)0000 0)9999 1)0016 1)0000 0)9999
2 1)0020 1)0000 1)0001 1)0033 1)0000 1)0000 1)0032 1)0000 1)0001
3 1)0028 0)9999 1)0003 1)0070 0)9999 1)0001 1)0064 0)9999 1)0003
4 1)0044 0)9999 1)0006 1)0144 0)9999 1)0008 1)0126 0)9999 1)0010
5 1)0069 0)9998 1)0011 1)0216 0)9999 1)0020 1)0188 0)9999 1)0021
6 1)0097 0)9998 1)0019 1)0233 0)9999 1)0033 1)0209 0)9999 1)0031

5 1 1)0010 1)0000 0)9997 1)0043 1)0000 0)9998 1)0035 1)0000 0)9996
2 1)0013 1)0000 0)9993 1)0164 1)0000 0)9999 1)0112 1)0000 0)9993
3 1)0015 1)0000 0)9989 1)0453 0)9999 1)0022 1)0272 1)0000 1)0005
4 1)0019 1)0000 0)9988 1)0551 1)0000 1)0063 1)0380 1)0000 1)0037
5 1)0026 0)9999 0)9988 1)0452 1)0000 1)0084 1)0369 1)0000 1)0064
6 1)0034 0)9999 0)9991 1)0352 1)0000 1)0091 1)0316 1)0000 1)0079

8 1 1)0006 1)0000 0)9966 1)0090 1)0000 0)9997 1)0047 1)0000 0)9967
2 1)0006 1)0000 0)9933 1)0470 1)0000 1)0007 1)0193 1)0000 0)9943
3 1)0006 1)0000 0)9916 1)0893 1)0000 1)0100 1)0413 1)0000 0)9990
4 1)0007 1)0000 0)9910 1)0739 1)0000 1)0161 1)0493 1)0000 1)0073
5 1)0009 1)0000 0)9909 1)0551 1)0000 1)0179 1)0453 1)0000 1)0130
6 1)0012 1)0000 0)9911 1)0432 1)0000 1)0185 1)0391 1)0000 1)0158
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Tables 4 and 5 show results related to the composite cylinder for both the
length-to-radius ratios and sti!ened with stringers only, rings only and both stringers and
rings according to the label at the heading of the columns (in the table, a"10 mm is the
base of the sti!ener and b is its height). Similar to the previous section, several scenarios
have been considered, in which the height over base ratio ranges from 1 to 8.

These tables clearly show that natural frequencies of the composite cylinder sti!ened by
stringers only and evaluated through Donnell's theory are a!ected by an error with the
same magnitude of the unsti!ened cylinder for both ¸/R ratios.

In contrast, when rings are used to increase the sti!ness of the cylinder under analysis
natural frequencies evaluated by Donnell's theory are up to 8)9 and 33% higher than the
corresponding natural frequencies evaluated with Love's theory for ¸/R"1 and 10,
respectively. It is interesting to observe that in both cases the presence of both stringers and
rings leads to lower di!erences with respect to corresponding cases of rings only.

3.3. COMPARISON WITH FE RESULTS

The last numerical comparison has been performed by using NASTRAN to develop
a "nite element model of a simple fuselage structure without the #oor. The model has been
built by using plate elements for both the cylinder and sti!eners, the latter being connected
to the cylinder through the use of rigid-body element (RBE) allowing to establish the



TABLE 5

Normalized natural frequencies u
1n

/u
1n,Love

for a composite sti+ened cylinder (¸/R"10)

Only stringers Only rings Stringers and rings

b/a n/2 Donnell Sanders FluK gge Donnell Sanders FluK gge Donnell Sanders FluK gge

1 1 1)0016 1)0000 0)9998 1)0019 1)0000 0)9998 1)0019 1)0000 0)9998
2 1)0287 0)9999 0)9999 1)0382 0)9999 0)9999 1)0372 0)9999 1)0000
3 1)0871 0)9999 1)0030 1)0960 0)9999 1)0034 1)0948 0)9999 1)0034
4 1)0659 0)9999 1)0046 1)0670 1)0000 1)0047 1)0668 1)0000 1)0047
5 1)0437 1)0000 1)0048 1)0440 1)0000 1)0049 1)0439 1)0000 1)0049
6 1)0309 1)0000 1)0049 1)0311 1)0000 1)0049 1)0311 1)0000 1)0049

2 1 1)0016 1)0000 0)9999 1)0047 1)0000 0)9998 1)0046 1)0000 0)9999
2 1)0279 0)9999 1)0002 1)1064 0)9999 1)0009 1)1016 0)9999 1)0011
3 1)0855 0)9999 1)0031 1)1177 1)0000 1)0041 1)1166 1)0000 1)0042
4 1)0656 0)9999 1)0046 1)0693 1)0000 1)0046 1)0692 1)0000 1)0046
5 1)0437 1)0000 1)0048 1)0448 1)0000 1)0046 1)0448 1)0000 1)0046
6 1)0309 1)0000 1)0049 1)0318 1)0000 1)0046 1)0318 1)0000 1)0046

5 1 1)0016 1)0000 1)0005 1)0504 1)0000 0)9998 1)0478 1)0000 1)0005
2 1)0252 0)9999 1)0018 1)2952 1)0000 1)0079 1)2872 1)0000 1)0080
3 1)0793 0)9999 1)0040 1)1321 1)0000 1)0094 1)1317 1)0000 1)0094
4 1)0644 0)9999 1)0048 1)0745 1)0000 1)0095 1)0744 1)0000 1)0095
5 1)0434 1)0000 1)0049 1)0495 1)0000 1)0095 1)0495 1)0000 1)0095
6 1)0308 1)0000 1)0049 1)0364 1)0000 1)0095 1)0364 1)0000 1)0095

8 1 1)0016 1)0000 1)0013 1)1788 1)0000 0)9998 1)1639 1)0000 1)0013
2 1)0226 0)9999 1)0042 1)3354 1)0000 1)0177 1)3305 1)0000 1)0176
3 1)0717 0)9999 1)0058 1)1400 1)0000 1)0186 1)1399 1)0000 1)0186
4 1)0623 0)9999 1)0053 1)0818 1)0000 1)0187 1)0818 1)0000 1)0187
5 1)0429 1)0000 1)0050 1)0568 1)0000 1)0188 1)0568 1)0000 1)0188
6 1)0307 1)0000 1)0049 1)0432 1)0000 1)0188 1)0435 1)0000 1)0188

TABLE 6

Natural frequencies (Hz) for a simple fusolage structure evaluated through both a FE
model and the considered shell theories

(m, n) NASTRAN Donnell Sanders Love FluK gge

(1, 2) 21)91 24)92(1)13) 21)97(1)00) 21)97(1)00) 21)97(1)00)
(1, 4) 36)99 51)27(1)39) 39)27(1)06) 39)27(1)06) 38)87(1)05)
(2, 2) 71)57 73)05(1)02) 71)87(1)00) 71)87(1)00) 71)87(1)00)
(2, 4) 46)37 59)24(1)28) 48)83(1)05) 48)83(1)05) 48)57(1)05)
(3, 4) 68)24 78)26(1)15) 70)59(1)03) 70)59(1)03) 70)43(1)03)
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junction between di!erent structural elements. To ensure a correct description of the
dynamic behavior of the fuselage up to 200 Hz, about 30 000 elements have been used.

The fuselage, made in aluminum (E"7)1]1010 N/m2, o"2700 kg/m3), has length of
16 m, radius of 1)3 m and wall thickness of 1)2 mm. It is sti!ened by 40 rings and 40 stringers
that are equally spaced; the former have I-shaped cross-section with the following
properties: position of the center or mass, 0)045 m (referred to the fuselage sidewall middle
plane); moment of inertia, 2)966]10~7 m4; area, 2)52]10~4 m2. Stringers have T-shaped
cross-section with the following properties: position of the center of mass, 0)00734 m
(referred to the fuselage sidewall middle plane); moment of inertia; 1)577]10~9 m4; area,
4)88]10~5 m2.
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In Table 6, natural frequencies of corresponding eigenmodes evaluated by using
NASTRAN and the four theories under analysis are compared. In order to permit a faster
comparison, analytical results have been normalized (in parentheses) with respect to the
corresponding result evaluated through NASTRAN.

It is evident that results obtained by using Donnell's theory are inaccurate, giving rise to
a maximum di!erence of about 39% in mode (1, 4). Conversely, the other three theories
provide results in good agreement with those obtained by using NASTRAN.

4. DISCUSSION

In the previous section, it has been demonstrated through numerical evidence that
Donnell's theory may give poor results with respect to the other three theories in some cases.

To understand the reason for such errors, it is interesting to look at Appendix B, where the
elements of the sti!ness matrix are shown. Clearly, to justify the poor results provided by
Donnell's theory it is necessary to look at terms that are neglected by Donnell and considered
by the other three theories. Moreover, it is necessary to pay attention to terms a!ected by the
presence of rings and stringers: A@

11
, B@

11
, D@

11
, A@

22
, B@

22
and D@

22
according to Appendix C. It is

easy to see that such terms may be D@
22

/R4 and B@
22

/R3, both related to the presence of rings.
Furthermore, it should be recalled that Donnell's theory provides results within an

engineering accuracy of 5% in the case of homogeneous isotropic shells: for such structures
the previous two terms should be negligible.

As a consequence, to understand when Donnell's theory can be used, it is possible to
evaluate the ratio between D@

22
/R4 and A@

22
/R2, the "rst being neglected by Donnell with respect

to the second according to terms K@
2,2

and K@
2,3

of the sti!ness matrix in Appendix B. Indeed, in
the particular case of unsti!ened homogeneous isotropic shells and upon assuming d

F
"0,

D@
22

/R4

A@
22

/R2
"

Eh3/12(1!l2)R4

Eh/(1!l2)R2
"

(h/R)2

12
@1. (16)

As a result, the following ratio can be introduced:

c
D
"

D@
22

/R4

A@
22

/R2

12

(h/R)2
"

12 D@
22

A@
22

h2
. (17)

This is equal to 1 for unsti!ened homogeneous isotropic shells (when D@
22

and A@
22

h2 have
the same order of magnitude) and can be used to determine the accuracy of Donnell's theory
if applied to orthotropic shells.

When composite or sti!ened cylinders are considered, c
D

is calculated by using both
material and geometric properties and its value will no longer be equal to unity. In
particular, if c

D
A1 the term D@

22
will have a greater magnitude than A@

22
h2 such that

Donnell's theory will skip large terms in the sti!ness matrix giving rise to errors in the
evaluation of the dynamic properties of the structure. In contrast, if c

D
is low Donnell's

theory will not consider only negligible terms.
The importance of the ratio c

D
is demonstrated by the previous numerical examples.

Indeed, for the aluminum cylinder with rings analyzed in section 3.1 and b/a"8, the ratio
c
D

is higher than 33s and for the composite cylinder of section 3.2 c
D

is equal to 24)43 and
sAccording to equation (17) and Appendix A, c
D

is given by

c
D
"12

D
22
#D`

22
(A

22
#A`

22
)h2

,

due to the presence of the rings; by recalling geometrical and material properties of the structure it follows that
A

22
"Eh/(1!l2)"3)927]108 N/m, D

22
"Eh3/12(1!l2)"818)2 Nm and, according to Appendix C,

A`
22
"N

r
Eba/¸"56)8]106N/m, D`

22
"N

r
Eab3/3¸"30293)2 N m so that c

D
"33)22.
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85)56 for ratios b/a of 5 and 8, respectively; in these cases, D@
22

/R4 has great importance is
elements K@

2,2
and K@

2,3
.

Finally, the case of the fuselage structure analyzed in section 3.3. shows the importance of
c
D
: for this sti!ened cylinder, representing a real engineering solution, c

D
"8592 so that the

sti!ness in the circumferential direction is due almost entirely to rings. It follows that results
provided by Donnell's theory are highly inaccurate.

5. CONCLUSIONS

In this article, several results obtained through Love's, Donnell's FluK gge's and Sanders'
thin shell theories to evaluate natural frequencies of sti!ened cylinders have been presented.

It is clearly demonstrated that in some cases Donnell's theory leads to very high errors in
the evaluation of eigenfrequencies of such structures, while the other three theories provide
results that are in good agreement. Moreover, numerical evidence and the introduction of
the ratio c

D
show that this inaccuracy is mainly related to the sti!ening e!ect due to rings.

This investigation is completed with the analysis of the dynamic behavior of a simple
fuselage structure sti!ened with both rings and stringers; by taking advantage of
NASTRAN to develop an FE model of the analyzed structure and referring to natural
frequencies provided by this software, it is shown that errors up to 40% can be obtained if
Donnell's theory is used, while the other theories provided results within the engineering
accuracy.
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APPENDIX A

The sti!ness submatrices AM @, BM @ and DM @ are given in terms of the extensional, coupling and
bending submatrices de"ned in equation (14) as
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where additional terms A`, B` and D` are related to the sti!ening elements as outlined in
Appendix C.
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APPENDIX B

The sti!ness matrix [K] of the cylinder with simply supported boundary conditions is given
where displacements have expression (15); in the following [K@]"[K]/(nR¸/2) and j"n/2.
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APPENDIX C

The e!ect of both rings and stringers can be taken into account as shown by McElman
et al. [4]; the same procedure was applied by NASA during the design of the Saturn
V launch vehicle [7].

The sti!ening e!ect can be represented by adding the average potential energy of
deformation due to rings and stringers to the energy related to the cylinder. Moreover,
according to Novozhilov [14], it is assumed that rings possess bending and extensional
sti!ness in their own plane, such that resistance to displacements perpendicular to their
plane and torsion can be neglected. Accordingly, stringers possess bending and extensional
sti!ness, while torsion is neglected.

Under these assumptions, it can be demonstrated that the sti!ening e!ect due to stringers
and rings can be represented by introducing additional terms into the extensional, coupling
and bending submatrices. If N

r
equally spaced rings are present, the additional terms are
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Similarly, the presence of N
s
equally spaced stringers gives the following additional terms:
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